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ABSTRACT

We discuss the well-posedness of the model problem
u, = ¢(ux)x on [0,1) x [0, T), T> 0, (p)
subject to given Neumann or Dirichlet boundary conditions at x = 0 and

and to the initial condition u(x,0) = f£(x); the given functions

x =1,
$(0) = 0, ¢ satisfies

f: (0,1 *+ R, ¢ : R+ R are assumed to be smooth,
the coercivity assumption E¢(§) > cEz, for some constant ¢ > 0 and for

EeR, and ¢ is assumed to be decreasing on an interval (a,b) with
a > 0. We present a recent nonuniqueness result in the special case when ¢

is piecewise linear and study a related convexified problem.

AMS (MOS) Subject Classifications: 35K55, 35K65

Key Words: diffusion equation, nonlinear, nonmonotone constitutive function,
a priori estimates, maximum principle, existence, nonuniqueness,

convexification
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SIGNIFICANCE AND EXPLANATION
The equation (P) in the abstract can be viewed as a simple model for non-

linear diffusion. The existing mathematical theory requires ¢' > 0. However,
in one space dimension the laws of thermodynamics merely imply that the graph
of ¢ 1lies in the first and third guadrant, without necessarily requiring ¢
to be monotone nondecreasing. This raises the natural question whether the
assumption ¢' > 0 can be replaced by the much weaker coercivity condition

EP(E) > cEz, ¢ > 0. For a nonmonotone, piecewise linear, coercive ¢ it was
shown in MRC TSR #2354 (see {5]) that the initial value problem for (P) has
infinitely many solutions, whenever the initial data f£'(°¢) reach the criti-
cal range where ¢'(°*) < 0. These solutions u of (P) have the property that
u, oscillates between regions in which ¢'(+) > 0. Although (P) is evidently
not well-posed, it is hoped that imposing additional physically motivated

assumptions will lead to a natural selection and a well-posed problem.

e

"Xin this report we first review known (previously unpublished) a priori
estimates for (P), and we then give a simpler construction f:f the existence
of infinitely many sélutions of (P) for a piecewise linear f%;,as suggested by
G. Strang [§¥. We then investigate further the qualitative behavior of
solutions of (P). Motivated by known results in one space dimension for the
steady state, non-elliptic problef) 2£3¢&;*’/61 we study the analogous
convexified problem associated with (P). Analytical and numerical considera-
tions suggest that the unique solution of the convexified problem (which has a
monotone, nondecreasing constitutive function) can be interpreted as an

average of solutions of (P), whenever the data f£'(°*) reach the critical

range.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A DIFFUSION EQUATION WITH A NONMONOTONE CONSTITUTIVE FUNCTION

Klaus Hé’llig"2 and John A. Nohel!

1. INTRODUCTION
We discuss the initial boundary value problem
u, = ¢(ux)x on [0,1] x [0,T]
(P)
u, (0,t) = u (1,t) = 0, u(x,0) = £(x) ,
where subscripts denote partial derivatives, under the principal assumption:
$: R+ R smooth, ¢(0) = 0, and there exists a
constant ¢ > 0 such that E§E) > cEzu EeR,
and there exists an interval (a,b) with a > 0 (n)

such that ¢°'(§) < 0, § e (a,b).

A model case is sketched in Figure 1.

$ (€)

v

Figure 1

Concerning f we assume throughout that f : [0,1] + R is as smooth as

needed and satisfies the boundary conditions. Dirichlet and inhomogeneous

1Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

2Thia material is based upon work partially supported by the National Science
Foundation under Grant No. MCS-7927062, Mod. 1.
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boundary conditions can also be discussed, including the theorems in Sections
3 and 4.

One motivation for studying (P) is the theory of nonlinear diffusion.
Specifically the Clausius-Duhem inequality [3, p. 79] in one space dimension
can be shown to imply that the flux Q(ux) need not be a monotone function of
the gradient of temperature Ui this is consistent with our assumption (A).
If ¢ is strictly monotone increasing (as is usually assumed) standard theory
guarantees that (P) has a unique solution which is, roughly speaking, as
smooth as the function ¢. 1In particular (see Figure 1), this is true in the
model case if the data f satisfy £'(x) € a. If, however, v(f'(xo)) <0
for some x, € (0,1), then in a neighborhood of (x5.0), (P) behaves like a
backward parabolic equation which is not well posed. In particular, if in

Figure 1 ¢(§) = % 53

- % Ez + 2&, then (P) cannot have a aolution u such
that u, is piecewise continuous on [0,1] x [0,T] for any T > 0, unless
f is analytic. The basic problem to be discussed here is whether (P) is
well-posed in some precise sense, whenever the data f'(x) fall in the
critical range ((a,b) in the model case).

The a priori estimates given in Section 2 suggest that (P) may have

solutions u with u, € L.([0,1] x [0,T]) for some T > 0. Such solutions

are constructed in Section 3 for piecewise linear ¢ satisfying assumption

(A); however, the solutions are not unique. Motivated by known results for
the steady-state, non-elliptic problem (O(ux)x = 0), we are lead to
discussing in Section 4 the "convexified" problem associated with (P), with
‘;é the objective (not yet established) of distinguishing a solution of (P) with
special properties. Other open questions include the existence of solutions

of (P) when ¢ is not piecewigse linear, and a justification of phase changes

suggested by numerical experiments.




2.  REMARKS ON A PRIORI ESTIMATES

Consider (P) with either homogeneous Neumann or Dirichlet boundary
conditions at x = 0,1, and with £ smooth. Let u € w'*2 pe a solution of
(p) on [0,1] x [0,T] for some T > 0. Standard energy methods yield the
following a priori information.

a. Multiplying by u and integrating the p.d.e. over (0,1] x [0,T7] gives

(i) ess supf uz(x,t)dx <-f £2(x)ax, and
telo,T] ©

1 1

T
(1) [ [ uix,traxat <= [ £2(xax ,
0 x 2c 0

© ey

where ¢ is the coercivity constant in (A); if u satisfies Dirichlet

b.c., the Poincaré inequality applied to (ii) also yields
2
f f u dxdt < const.
00

b. Multiplying the p.d.e. by u, and integrating over {fo,1] x [06,T] gives

(1) j [ uy 2axat < j O(£' (x))ax ,

00
' Aucession Fop’
where 0'(+) = ¢(*) and ETIS GRAAT
DTIC TAB 0o
\,-’
(i1) ess sup [ ®(u (x,t))dx < f £ (x))dx ! Jusf??llﬁ:fm O
tefo,T] 0 Y !
By
hich, 1 iew of th ivit ti impl
which, in v e coercivity agsumption, implies Diltribuuon/
1 2 1 Availability Codes
(111) ess sup [ u3(x,t)ax < S e e . Avail end/or
te(o,T] O 0 Dist Speeial
-3-




It should be observed that if ¢ is strictly monotone these estimates
imply that u € Hz, and standard techniques yield existence, without applying
e.g. the theory of maximum monotone operators (in particular, this is true if
£'(x) < a, see Figure 1). However, one cannot do this if ¢ is not monotone
everywhere (¢'(f£f'(x)) < 0 for some x € R).

A more subtle estimate, proved by J. Bona, L. Wahlbin and the second
author, is
£. For either the Dirichlet or Neumann problem

hu 1 <% sup J¢(£'(x))]

® »2[0,1)

the optimal choice of the coercivity constant ¢ = inf Hy) > 0.
YER

Proof: Multiply the p.d.e. by ¢2k(ux)ut, where in the exponent k is a

positive integer, and integrate with respect to x and t. Defining

y
!k(y) = f 02k+1(5)<1£ (> 0 by hypothesis on ¢ for y € R)
0

one obtains, after using integration by parts and the boundary conditions:

1

£t oo 2 1 )
({J ¢ (ux)utdxdt + -2-):_-—1-({ Yk(ux)dx -ﬁoj !k(f'(x))dx . (1)

From the coercivity assumption

2k+1

-] 2k+2
Yk(y) > %+ 2 Y (y eR), and

2k#1 1
J uk*2ax |

1
[~
J Y (u )ax > —s

e g
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Next let M = If'l_, N = sup 1$(£'(x)|; then
xe(0,1]

1
[ (£ aax < mn2ktt |

0

propping the positive first term in (1), and then raising both sides to the

(2x + 2)”' yields

a4 1 2kl

c 2k+2 _2k+2
—_— qu(O,t)l(2k+2) | , 0 €t <T .
(2x + 2)2‘“'2

Finally, letting k + & we obtain

N
Wi ¢, 0¢<t <T.

consider (P) in the model case of Figure 1

4. Maximum-minimum principle.

with homogeneous Neumann boundary conditions. Let u € wz'z be a solution

on [0,1] x [0,T] for some T > 0. Then for 0 €t € 7T:

min(a, min £°'(x)) Cux(x,t) ¢ max(b, max f£'(x)) .
0<x<y 0<x<1

For classical solutions the result can be proved by a standard comparison

method. We sketch a more general approach. Let Vv = u,. Then v is a

solution of the Dirichlet problem

v, = §v) on (0,11 x (0,T)
xx (2)

v(x,0) = £°(x); v(0,t) = v(1,t) =0 .
Let 0 < a' <a, b >b> 0 (see Figure 1). Define g : R + R such that
g'(*) =0 on (a',d') and g'(*) > 0 otherwise., Let G(s) = Is gl £)Aag&.
Multiply (1) by g(v) and integrate over {o,1 x[0,t), 0 <t < :.
Integration by parts and the boundary conditions yield
t 1

1 1
[ Glvixtdax + [ | ¢ (vig'(mviaxae = [ Gle'(x)ax .
1] 00 0

B S S -




By definition of g and assumptions on ¢ the double integral is positive,

80 that

1 1
| Glvix,t))ax € [ G(f£'(x))ax, 0 <t < T.
0 0

The successive specific choices
gle) = (- -k)+, kx = max(b', max f£f'(x)) ,
0<x<1
and
gl*) = =(k= *)_, K = min(a', min £'(x))
0<x<1

yield G(v(x,0)) = G(£f'(x)) = 0. Therefore, respectively,

1

%I (vix,t) - x)2ax <0, 0 <t <T,
0

and
1~
3/ (K-vixtnax <o, o<e<r.
0

Thus

K<vix,t) €k, 0<t<T.
Letting a' +a and b' +b yields the result. It should be noted that this
stronger result, proved under the gstronger assumption u € w2 2 (rather

than W'’2), is not implied by the 1" estimate in 2¢c.

e,
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3. EXISTENCE AND NONUNIQUENESS IN A SPECIAL CASE
For a piecewise linear constitutive function ¢ it was shown in [5] that
the problem (P) has infinitely many solutions if
{x = ¢ (£'(x)) <0} #6 : (3)
Theorem. Let ¢ be piecewise linear with ¢'((-=,a) U (b,®)) > 0 and
¢ ((a,b)) < 0 (see Figure 1) and assume that f£'(x) satisfies (3). There
exists T > 0 such that (P) has infinitely many solutions u with Q(ux)
HSlder continuous, and u, € L, u, € 1P (p < ® on the domain
(0,11 x {0,T). Moreover, u,(x,t) ¢ [a,b] for (x,t) e [0,1) x (0,T]).
We outline the proof of the Theorem in the case when the increasing parts

of ¢ are parallel, i.e. ¢ is of the form:

Sy
ot

b
[ 4

i }
/ 1 a b 2 3 Eigure 2

with ¢'(m\{a,b]) = 1. For simplicity we also assume that f£f'(x) < 2, x e (0,1].
The key to the proof is the construction of a function w which represents
the oscillating part of a solution u and reduces the problem (1) to an
inhomogeneous heat equation for the smooth part v of the solution u = v + w.
We describe an idea of G. Strang [6) for constructing w which
simplifies the original argument in [5]. Consider the following (infinite)

triangulation of [0,1]2




~.

Figure 3

% V¥

which is determined by the points
zjk = (k2-j,2-j), k= 0,...,2j, j en.
set h(0) = 0, h'(x) = max(0,£'(x) - 1). Define w as the piecewise linear
function with respect to this partition which interpolates the data
Wi = max{v23 : v <nx2™?), ve 5)
at the points zjk‘
By the definition of 'jk'
vy € hk27d) <wy v 277,
and since 0 € h' < 1 we have
- -3
One then easily verifies that
(1) w, : [0,1] x [0,7] » {0,1}
[ ]
(ii) w. €L
(iii) 1lim lw(e,t) = hi_ = 0 (4)
t+0
(4v) £9(x) €1 =273 =m> w (x,8) =0 for & <273,
Property (iv) means that for small ¢ wx(O,t) is supported in a neighborhood

of the set {x : £'(x) > 1}, Let v be the solution of the problem




grp—

Ve tow, = v
v,e(0,t) = v (1,t) =0 (5)
v(x,0) = £(x) = h(x) .

We claim that u= v + w is a solution of problem (P).

Since w, € L., vy is HSlder continuous and v, € 1P for any p < ® by
standard estimates for the heat equation. Put « := min(a - 1,2 - b). By the
continuity of v, and (4(iv)) there exists T > 0 such that

vx(x,t) €1 + K, (x,t) e {0,1) x [o0,T7] ,
and
(supp w,) N [0,1] x [0,T] C
{tx,£) : £ e [0,7),v,(x,t) > 1= «}.
In view of the relation
$E+ 1) = ¢(E), Ee (1 - 1+, (6)
it follows that
Ve tw, =V, = ¢(vx)x = ¢(vx + 'x)x .

Clearly, the function w is not uniquely determined, For any A > O,

wA(x,t) 3= w(x,At) satisfies (4). Since Vy is continuous the solutions

u, = v, + wx are distinguished by their Aifferent discontinuity patterns.
Thus there is a continuum of solutions to the problem (P).

If the monotone increasing parts of ¢ have different slopes the proof
of the Theorem is considerably more complicated (see [5]). The reason is that
instead of (6) we have the relation

¢(E + (AE + B)) = ¢(8) , (7)
where the shift is no longer independent of £. Nevertheless, the proof is
based on the construction of an auxiliary function w which, however, depends

on v and the equation for the smooth part v becomes quasilinear. For a

general smooth nonmonotone ¢ the existence question is not settled.




In spite of nonuniqueness, numsi ical approximations to the problem (P)

are stable; the x-derivatives of the numerical solution have the oscillatory

behavior asserted by the Theorem.

We used a Crank-Nicholson scheme

nt1 _ n _ At Ax n+1 n
uj uf = 5 o5 (Duy_y + Duj_1)) (8)

where u? approximates u(jAx,nAt) and Duy = u = u; denotes the forward
3 3 bAd) 3

difference. For ¢ in Figure 2 with a = 1.25, b = 1,75 and the model

initial data f(x) = 3x2 - 2x3 the numerical solutions show the following

typical behavior. For small t, ulAt € 0.1, Dug oscillates over the interval

where ¢'(f') is negative as shown in figure (4) below

n/L
Du
3
2 4 — e eem—e  e—o
1l + — e e —— - — o —
—~— 1—----.
=t —'—‘1 h
J 7
0

1 jax Figure 4

where Ax = 277, At = (Ax)z, nat = 2~7, The oscillations are very regular.

n
Duy

alternates between the values 1 and 2 which, in agreement with the

Theorem, differ by 1 and do not lie in the interval [1.25, 1.75] where ¢'

)

is negative. Moreover, Q(Duj is (numerically) continuous.

As t = nAt increases the oscillations gradually disappear and u?

approaches the limiting state u_ = 0. Similar numerical approximations have

been independently studied by G. Strang and A. Naby [6]. It has not been

established that the numerical approximations converge and thereby possibly

single out a distingquished solution of the problem (P).

-10-
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4. A RELATED CONVEXIFIED PROBLEM

It is known (1] that in one space dimension the solution of the problem
0= ¢(u ) , x € [0,1]
x'x (9)
u(0) = 0, wu(1) =4, d a constant ,

can be obtained by minimizing the functional

1
Ju) = [ Mu (x))ax, 0'(e) = ¥,
0
over all functions u € w"z([0,1]) satisfying the given boundary conditions,
under suitable assumptions on ¢ (these do not require ¢ convex). If ¢
satisfies assumptions (A), (9) is the steady state problem associated with
(P). By a result of Ekeland and Témam {4] such a solution u of the

variational problem also minimizes the functional

Hu) = [ B(u_(x))ax ,
x
0
vhere & is the convexification of 9, and u solves the convexified

problem:
0 = $u)_, x e [0,1)
xx - e (10)
u(0) = 0, u(1) =d, ¢(¢) = & () ;
the function ;(-) is necessarily nondecreasing on R (if ¢ has the graph
in Figure 2, Figure 5 below is the graph of ¢). An analogous variational prin-
ciple has been established for problem (P), but only for ¢ monotone (see [2]).
Motivated by these results we consider the convexified problem associated
with (P):
ug = Mu ), (xt) e (0,1 x (0,7 ,

()
u,(0,t) = u (1,£) = 0, u(x,0) = £(x) .

-19=
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By the Theorem below, solutions of (P) and (F) show a qualitatively different
behavior and, at first sight, there is 78 obvious connection between them when
the data f' |is gﬁooth and falls in tﬂe critical range (a,b). Nevertheless,
it appears plausible that as t + ® problems (P) and (F) approach the same
steady state.

For simplicity we discuss (PF) only for the piecewise linear constitutive

function considered in Section 3. For ¢ in Figure 2, ? is of the form

J(z)A

1 ot

H-r-

i \

The graph of ¢ is familiar from the Stefan problem. In fact, if the initial
data satisfy
f'(x) ¢ (1,2), x e [0,1] ,
;(f') continuous ,
(P) describes a Stefan problem. If, however, f is smooth which we assume
throughout this section, the evolution of the free boundaries resulting from
(P) is different. For simplicity we assume that
£'(x) € 2, x e [0,1] ,
{x : £'(x) > 1} = (ry,85), 0 < T < 8y <1, (11)
£"(ry) > 0, f“(so) <0 .,
Theorem. Problem (F) with ¢ given in Figure 5 has a unique solution u
on [0,1] xR, with

]
luxl. < If LI

-12=
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If £ satisfies assumptions (11), the region 0 := {(x,t) : ux(x,t) > 1}

1/2 (H&lder class) connecting

where u, = 0 is bounded by two curves r,s € H
the points (ro,o),(so,o) with the point (x,,Ts) (Figure 6). Moreover,

T, < I£'10_ . (12)

A
v a

Ll

X

Fiqure 6

Note that u satisfies the heat equation on [0,1] x R,\fl and the regularity
assertions in particular describe the behavior of u in a neighborhood of the
points (ro,o),(so,O)-
The regularity for u,r,s8 is proved by using the implicit semidiscrete
approximation
u(x,(n+1)At) - u(x,nit) = At¢(ux(x,(n+1)u:))x, x e [0,1] ,
of the equation u, = ;(ux)x. We prove the inequality (12). Since u is

continuous and u(x,t) = u(x,0) on § we have

u(r{t),t) = £(r(t)) . (13)
Also, note that
u (r(t)”,t) = 1 . (14)
)3
At an e g A W M -

T PR P
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Integrating the equation u, = .O(ux)x over the domain

8 = {(x,£) :+ 0 < x < x(t), t e (0,7,)} we obtain

0= [f (u, - u,)axat =
nl’
T, r(T,) T,

4
0
- [ ftx)ax - [ f(r(t))r(t)at + [ ulx,Te)dx - [ 1 at .
0 0 0 0

Using (13) and qul. < If'l. for the estimate, it follows that

r(t,) 4 TlT)
T = [ (ulx,T,) - £(x))ax < [ [ 20" gyax < MM .
0 0 x

Numerical computations show (Figure 6 is a particular example with
f(x) = x? - 2x3) that the curves r,8 touch the x-axis. Formally, this can
be explained as follows. Differentiating equation (13) with respect to t
+nd using (14) we have
TE) (' (r(E)) = 1) =~ u (r(t),t) .
Since f£'(r(0)) = £'(ry) = 1 we.can rewrite this in the form
r(E)(r(t) = Tg) = u(r(t),t)/g(r(t) - ry)
£'(8) - f'(ro)

vwhere g(§ - ro) t= T ro « If we assume that u,,u,., are

continuous on 5: it follows that

r(t) = ry + Y2t + o(/k) (t +0) , (15)
which is consistent with reqularity of r established in the theorem above.
We have not yet succeeded in proving (15). The difficulty is that the

free boundary x = r(t) is characteristic for (F) at the point (ry,0).

-14=
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subject to given Neumann or Dirichlet boundary conditions at x = 0 and
x =1, and to the initial condition u(x,0) = f(x); the given functions
£: [0,1] R ¢ : R+ R are assumed to be smooth, ¢(0) = 0, ¢ satisfies
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20. ABSTRACT - cont'd.

the coercivity assumption E£¢ () > cEz, for some constant ¢ > 0 and for
4 Ee R, and ¢ is assumed to be decreasing on an interval (a,b) with
a > 0. We present a recent nonuniqueness result in the special case when ¢

is piecewise linear and study a related convexified problem.
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